Today : Sun, Jun 25 2017 .


Fast Multipole Methods (CTP)


References:

  • Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987), no. 2, 325--348. (*) 2001 Steele Prize Seminal Contribution to Research
  • Carrier, J.; Greengard, L.; Rokhlin, V. A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Statist. Comput. 9 (1988), no. 4, 669--686.
  • Rokhlin, V. Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990), no. 2, 414--439. (*)
  • Nabors, K.; Korsmeyer, F. T.; Leighton, F. T.; White, J. Preconditioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral equations of potential theory. Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992). SIAM J. Sci. Comput. 15 (1994), no. 3, 713--735. (*)
  • Rokhlin, V. Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl. Comput. Harmon. Anal. 1 (1993), no. 1, 82--93.
  • Greengard, Leslie; Rokhlin, Vladimir A new version of the fast multipole method for the Laplace equation in three dimensions. Acta numerica, 1997, 229--269, Acta Numer., 6, Cambridge Univ. Press, Cambridge, 1997. (*)
  • Hrycak, Tomasz; Rokhlin, Vladimir An improved fast multipole algorithm for potential fields. SIAM J. Sci. Comput. 19 (1998), no. 6, 1804--1826 (*)
  • Cheng, H.; Greengard, L.; Rokhlin, V. A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155 (1999), no. 2, 468--498.
  • Yarvin, Norman; Rokhlin, Vladimir An improved fast multipole algorithm for potential fields on the line. SIAM J. Numer. Anal. 36 (1999), no. 2, 629--666
  • Sun, Xiaobai; Pitsianis, Nikos P. A matrix version of the fast multipole method. SIAM Rev. 43 (2001), no. 2, 289--300 (*)
  • Gimbutas, Zydrunas; Rokhlin, Vladimir A generalized fast multipole method for nonoscillatory kernels. SIAM J. Sci. Comput. 24 (2002), no. 3, 796--817
  • Ying, Lexing; Biros, George; Zorin, Denis A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196 (2004), no. 2, 591--626. (*)

This site has been visited 61839 times. Page: Main.T-FMM - Last Modified : Tue, Oct 28 2008

NSF-National Science Foundation DOE-US Dept of Energy

Maintained by Jun Jia, Bo Zhang, and Jingfang Huang
Copyright 2008 FastMultipole.org